Cryptography Resilient to Continual Memory Leakage
نویسندگان
چکیده
In recent years, there has been a major effort to design cryptographic schemes that remain secure even if part of the secret key is leaked. This is due to a recent proliferation of side channel attacks which, through various physical means, can recover part of the secret key. We explore the possibility of achieving security even with continual leakage, i.e., even if some information is leaked each time the key is used. We show how to securely update a secret key while information is leaked: We construct schemes that remain secure even if an attacker, at each time period, can probe the entire memory (containing a secret key) and “leak” up to a (1− o(1)) fraction of the secret key. The attacker may also probe the memory during the updates, and leak O(log k) bits, where k is the security parameter (relying on subexponential hardness allows k bits of leakage during each update process). All of the above is achieved without restricting the model as is done in previous works (e.g. by assuming that “only computation leaks information” [Micali-Reyzin, TCC04]). Specifically, under the decisional linear assumption on bilinear groups (which allows for a leakage rate of (1/2−o(1))) or the symmetric external Diffie-Hellman assumption (which allows for a leakage rate of (1− o(1))), we achieve the above for public key encryption, identity-based encryption, and signature schemes. Prior to this work, it was not known how to construct public-key encryption schemes even in the more restricted model of [MR]. The main contributions of this work are (1) showing how to securely update a secret key while information is leaked (in the more general model) and (2) giving a public key encryption (and IBE) schemes that are resilient to continual leakage. ∗Weizmann Institute of Science and Microsoft Research, [email protected]. †Microsoft Research, [email protected]. ‡University of Maryland, [email protected]. §IBM Research, [email protected].
منابع مشابه
A Leakage-Resilient Pairing-Based Variant of the Schnorr Signature Scheme
Leakage-resilient cryptography aims at capturing side-channel attacks within the provable security framework. Currently there exists a plethora of schemes with provably secure guarantees against a variety of side-channel attacks. However, meeting the strongest security levels (resilience against continual leakage attacks) under the weakest assumptions leads currently to costly schemes. Addition...
متن کاملMulti-location Leakage Resilient Cryptography
Understanding and modeling leakage in the context of cryptographic systems (connecting physical protection of keys and cryptographic operation) is an emerging area with many missing issues and hard to understand aspects. In this work we initiate the study of leakage out of cryptographic devices when the operation is inherently replicated in multiple locations. This setting (allowing the adversa...
متن کاملLeakage-Resilient Public-Key Encryption from Obfuscation
The literature on leakage-resilient cryptography contains various leakage models that provide different levels of security. In this work, we consider the bounded leakage and the continual leakage models. In the bounded leakage model (Akavia et al. – TCC 2009), it is assumed that there is a fixed upper bound L on the number of bits the attacker may leak on the secret key in the entire lifetime o...
متن کاملSignatures Resilient to Continual Leakage on Memory and Computation
Recent breakthrough results by Brakerski et al and Dodis et al have shown that signature schemes can be made secure even if the adversary continually obtains information leakage from the secret key of the scheme. However, the schemes currently do not allow leakage on the secret key and randomness during signing, except in the random oracle model. Further, the random oracle based schemes require...
متن کاملIdentity-Based Encryption Resilient to Continual Auxiliary Leakage
We devise the first identity-based encryption (IBE) that remains secure even when the adversary is equipped with auxiliary input (STOC ’09) – any computationally uninvertible function of the master secret key and the identity-based secret key. In particular, this is more general than the tolerance of Chow et al.’s IBE schemes (CCS ’10) and Lewko et al.’s IBE schemes (TCC ’11), in which the leak...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010